Euclid's Postulates, Common Notations, and Propositions from Book 1

Postulates

Postulate 1To draw a straight line from any point to any point.
Postulate 2To produce a finite straight line continuously in a straight line.
Postulate 3To describe a circle with any center and radius.
Postulate 4That all right angles equal one another.
Postulate 5That, if a straight line falling on two straight lines makes the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles.

Common Notions

Common notion 1Things which equal the same thing also equal one another.
Common notion 2If equals are added to equals, then the wholes are equal.
Common notion 3If equals are subtracted from equals, then the remainders are equal.
Common notion 4Things which coincide with one another equal one another.
Common notion 5The whole is greater than the part.

Propositions

Proposition 1To construct an equilateral triangle on a given finite straight line.
Proposition 2To place a straight line equal to a given straight line with one end at a given point.
Proposition 3To cut off from the greater of two given unequal straight lines a straight line equal to the less.
Proposition 4If two triangles have two sides equal to two sides respectively, and have the angles contained by the equal straight lines equal, then they also have the base equal to the base, the triangle equals the triangle, and the remaining angles equal the remaining angles respectively, namely those opposite the equal sides.
Proposition 5In isosceles triangles the angles at the base equal one another, and, if the equal straight lines are produced further, then the angles under the base equal one another.
Proposition 6If in a triangle two angles equal one another, then the sides opposite the equal angles also equal one another.
Proposition 7Given two straight lines constructed from the ends of a straight line and meeting in a point, there cannot be constructed from the ends of the same straight line, and on the same side of it, two other straight lines meeting in another point and equal to the former two respectively, namely each equal to that from the same end.
Proposition 8If two triangles have the two sides equal to two sides respectively, and also have the base equal to the base, then they also have the angles equal which are contained by the equal straight lines.
Proposition 9To bisect a given rectilinear angle.
Proposition 10To bisect a given finite straight line.
Proposition 11To draw a straight line at right angles to a given straight line from a given point on it.
Proposition 12To draw a straight line perpendicular to a given infinite straight line from a given point not on it.
Proposition 13If a straight line stands on a straight line, then it makes either two right angles or angles whose sum equals two right angles.
Proposition 14If with any straight line, and at a point on it, two straight lines not lying on the same side make the sum of the adjacent angles equal to two right angles, then the two straight lines are in a straight line with one another.
Proposition 15If two straight lines cut one another, then they make the vertical angles equal to one another.
CorollaryIf two straight lines cut one another, then they will make the angles at the point of section equal to four right angles.
Proposition 16In any triangle, if one of the sides is produced, then the exterior angle is greater than either of the interior and opposite angles.
Proposition 17In any triangle the sum of any two angles is less than two right angles.
Proposition 18In any triangle the angle opposite the greater side is greater.
Proposition 19In any triangle the side opposite the greater angle is greater.
Proposition 20In any triangle the sum of any two sides is greater than the remaining one.
Proposition 21If from the ends of one of the sides of a triangle two straight lines are constructed meeting within the triangle, then the sum of the straight lines so constructed is less than the sum of the remaining two sides of the triangle, but the constructed straight lines contain a greater angle than the angle contained by the remaining two sides.
Proposition 22To construct a triangle out of three straight lines which equal three given straight lines: thus it is necessary that the sum of any two of the straight lines should be greater than the remaining one.
Proposition 23To construct a rectilinear angle equal to a given rectilinear angle on a given straight line and at a point on it.
Proposition 24If two triangles have two sides equal to two sides respectively, but have one of the angles contained by the equal straight lines greater than the other, then they also have the base greater than the base.
Proposition 25If two triangles have two sides equal to two sides respectively, but have the base greater than the base, then they also have the one of the angles contained by the equal straight lines greater than the other.
Proposition 26If two triangles have two angles equal to two angles respectively, and one side equal to one side, namely, either the side adjoining the equal angles, or that opposite one of the equal angles, then the remaining sides equal the remaining sides and the remaining angle equals the remaining angle.
Proposition 27If a straight line falling on two straight lines makes the alternate angles equal to one another, then the straight lines are parallel to one another.
Proposition 28If a straight line falling on two straight lines makes the exterior angle equal to the interior and opposite angle on the same side, or the sum of the interior angles on the same side equal to two right angles, then the straight lines are parallel to one another.
Proposition 29A straight line falling on parallel straight lines makes the alternate angles equal to one another, the exterior angle equal to the interior and opposite angle, and the sum of the interior angles on the same side equal to two right angles.
Proposition 30Straight lines parallel to the same straight line are also parallel to one another.
Proposition 31To draw a straight line through a given point parallel to a given straight line.
Proposition 32In any triangle, if one of the sides is produced, then the exterior angle equals the sum of the two interior and opposite angles, and the sum of the three interior angles of the triangle equals two right angles.
Proposition 33Straight lines which join the ends of equal and parallel straight lines in the same directions are themselves equal and parallel.
Proposition 34In parallelogrammic areas the opposite sides and angles equal one another, and the diameter bisects the areas.
Proposition 35Parallelograms which are on the same base and in the same parallels equal one another.
Proposition 36Parallelograms which are on equal bases and in the same parallels equal one another.
Proposition 37Triangles which are on the same base and in the same parallels equal one another.
Proposition 38Triangles which are on equal bases and in the same parallels equal one another.
Proposition 39Equal triangles which are on the same base and on the same side are also in the same parallels.
Proposition 40Equal triangles which are on equal bases and on the same side are also in the same parallels.
Proposition 41If a parallelogram has the same base with a triangle and is in the same parallels, then the parallelogram is double the triangle.
Proposition 42To construct a parallelogram equal to a given triangle in a given rectilinear angle.
Proposition 43In any parallelogram the complements of the parallelograms about the diameter equal one another.
Proposition 44To a given straight line in a given rectilinear angle, to apply a parallelogram equal to a given triangle.
Proposition 45To construct a parallelogram equal to a given rectilinear figure in a given rectilinear angle.
Proposition 46To describe a square on a given straight line.
Proposition 47In right-angled triangles the square on the side opposite the right angle equals the sum of the squares on the sides containing the right angle.
Proposition 48If in a triangle the square on one of the sides equals the sum of the squares on the remaining two sides of the triangle, then the angle contained by the remaining two sides of the triangle is right.
See also Euclid's Elements